header image

Vous retrouverez ici tout le programme officiel des sciences de la vie et de la terre en classe de terminale scientifique comprenant les notions clés à maîtriser. Pour avoir les meilleurs sites de révisions BAC SVT, cliquez par ici. Bonnes découvertes.

Thème 1 : la Terre dans l’Univers, la vie, l’évolution du vivant


Génétique et Evolution




Le brassage génétique et sa contribution à la diversité génétique

Diversification génétique et diversification des êtres vivants

De la diversification des êtres vivants à l’évolution de la biodiversité

Un regard sur l’évolution de l’Homme

Les relations entre organisation et mode de vie, résultat de l’évolution : l’exemple de la vie fixée chez les plantes



Le domaine continental et sa dynamique



La caractérisation du domaine continental : lithosphère continentale, reliefs et épaisseur crustale

La convergence lithosphérique : contexte de la formation des chaînes de montagnes

Le magmatisme en zone de subduction : une production de nouveaux matériaux continentaux

La disparition des reliefs



Thème 2 : enjeux planétaires contemporains


Géothermie et propriétés thermiques de la Terre






La plante domestiquée






Thème 3 : corps humain et santé


Le maintien de l’intégrité de l’organisme : quelques aspects de la réaction immunitaire





Neurone et fibre musculaire : la communication nerveuse




————————————————————-

Thème 1 : la Terre dans l’Univers, la vie, l’évolution du vivant


Génétique et Evolution



La méiose est la succession de deux divisions cellulaires précédée comme toute division d’un doublement de la quantité d’ADN (réplication). Dans son schéma général, elle produit quatre cellules haploïdes à partir d’une cellule diploïde.
Au cours de la méiose, des échanges de fragments de chromatides (crossing-over ou enjambement) se produisent entre chromosomes homologues d’une même paire.
Les chromosomes ainsi remaniés subissent un brassage interchromosomique résultant de la migration aléatoire des chromosomes homologues lors de la 1ère division de méiose. Une diversité potentiellement infinie de gamètes est ainsi produite.

Des anomalies peuvent survenir. Un crossing-over inégal aboutit parfois à une duplication de gène. Un mouvement anormal de chromosomes produit une cellule présentant un nombre inhabituel de chromosomes.
Ces mécanismes, souvent sources de troubles, sont aussi parfois sources de diversification du vivant (par exemple à l’origine des familles multigéniques).

Au cours de la fécondation, un gamète mâle et un gamète femelle s’unissent : leur fusion conduit à un zygote. La diversité génétique potentielle des zygotes est immense. Chaque zygote contient une combinaison unique et nouvelle d’allèles. Seule une fraction de ces zygotes est viable et se développe.

D’autres mécanismes de diversification des génomes existent : hybridations suivies de polyploïdisation, transfert par voie virale, etc. S’agissant des gènes impliqués dans le développement, des formes vivantes très différentes peuvent résulter de variations dans la chronologie et l’intensité d’expression de gènes communs, plus que d’une différence génétique.
Une diversification des êtres vivants est aussi possible sans modification des génomes : associations (dont symbioses) par exemple. Chez les vertébrés, le développement de comportements nouveaux, transmis d’une génération à l’autre par voie non génétique, est aussi source de diversité : chants d’oiseaux, utilisation d’outils, etc.

Sous l’effet de la pression du milieu, de la concurrence entre êtres vivants et du hasard, la diversité des populations change au cours des générations. L’évolution est la transformation des populations qui résulte de ces différences de survie et du nombre de descendants.

La diversité du vivant est en partie décrite comme une diversité d’espèces. La définition de l’espèce est délicate et peut reposer sur des critères variés qui permettent d’apprécier le caractère plus ou moins distinct de deux populations (critères phénotypiques, interfécondité, etc.).
Le concept d’espèce s’est modifié au cours de l’histoire de la biologie. Une espèce peut être considérée comme une population d’individus suffisamment isolés génétiquement des autres populations.
Une population d’individus identifiée comme constituant une espèce n’est définie que durant un laps de temps fini. On dit qu’une espèce disparaît si l’ensemble des individus concernés disparaît ou cesse d’être isolé génétiquement. Une espèce supplémentaire est définie si un nouvel ensemble s’individualise.

Un regard sur l’évolution de l’Homme

D’un point de vue génétique, l’Homme et le chimpanzé, très proches, se distinguent surtout par la position et la chronologie d’expression de certains gènes. Le phénotype humain, comme celui des grands singes proches, s’acquiert au cours du développement pré et postnatal, sous l’effet de l’interaction entre l’expression de l’information génétique et l’environnement (dont la relation aux autres individus).

Les premiers primates fossiles datent de – 65 à -50 millions d’années. Ils sont variés et ne sont identiques ni à l’Homme actuel, ni aux autres singes actuels. La diversité des grands primates connue par les fossiles, qui a été grande, est aujourd’hui réduite. Homme et chimpanzé partagent un ancêtre commun récent. Aucun fossile ne peut être à coup sûr considéré comme un ancêtre de l’homme ou du chimpanzé.

Le genre Homo regroupe l’Homme actuel et quelques fossiles qui se caractérisent notamment par une face réduite, un dimorphisme sexuel peu marqué sur le squelette, un style de bipédie avec trou occipital avancé et aptitude à la course à pied, une mandibule parabolique, etc. Production d’outils complexes et variété des pratiques culturelles sont associées au genre Homo, mais de façon non exclusive. La construction précise de l’arbre phylogénétique du genre Homo est controversée dans le détail.

Les relations entre organisation et mode de vie, résultat de l’évolution : l’exemple de la vie fixée chez les plantes

Les caractéristiques de la plante sont en rapport avec la vie fixée à l’interface sol/air dans un milieu variable au cours du temps. Elle développe des surfaces d’échanges de grande dimension avec l’atmosphère (échanges de gaz, capture de la lumière) et avec le sol (échange d’eau et d’ions).
Des systèmes conducteurs permettent les circulations de matières dans la plante, notamment entre systèmes aérien et souterrain. Elle possède des structures et des mécanismes de défense (contre les agressions du milieu, les prédateurs, les variations saisonnières).

L’organisation florale, contrôlée par des gènes de développement, et le fonctionnement de la fleur permettent le rapprochement des gamètes entre plantes fixées. La pollinisation de nombreuses plantes repose sur une collaboration animal pollinisateur/plante produit d’une coévolution. À l’issue de la fécondation, la fleur se transforme en fruits contenant des graines.
La dispersion des graines est nécessaire à la survie et à la dispersion de la descendance. Elle repose souvent sur une collaboration animal disséminateur/plante produit d’une coévolution.

Le domaine continental et sa dynamique


La lithosphère est en équilibre (isostasie) sur l’asthénosphère. Les différences d’altitude moyenne entre les continents et les océans s’expliquent par des différences crustales.
La croûte continentale, principalement formée de roches voisines du granite, est d’une épaisseur plus grande et d’une densité plus faible que la croûte océanique. L’âge de la croûte océanique n’excède pas 200 Ma, alors que la croûte continentale date par endroit de plus de 4 Ga. Cet âge est déterminé par radiochronologie. Au relief positif qu’est la chaîne de montagnes, répond, en profondeur, une importante racine crustale.

L’épaisseur de la croûte résulte d’un épaississement lié à un raccourcissement et un empilement. On en trouve des indices tectoniques (plis, failles, nappes) et des indices pétrographiques (métamorphisme, traces de fusion partielle). Les résultats conjugués des études tectoniques et minéralogiques permettent de reconstituer un scénario de l’histoire de la chaîne.

Les chaînes de montagnes présentent souvent les traces d’un domaine océanique disparu (ophiolites) et d’anciennes marges continentales passives. La « suture » de matériaux océaniques résulte de l’affrontement de deux lithosphères continentales (collision). Tandis que l’essentiel de la lithosphère continentale continue de subduire, la partie supérieure de la croûte s’épaissit par empilement de nappes dans la zone de contact entre les deux plaques.

Les matériaux océaniques et continentaux montrent les traces d’une transformation minéralogique à grande profondeur au cours de la subduction. La différence de densité entre l’asthénosphère et la lithosphère océanique âgée est la principale cause de la subduction. En s’éloignant de la dorsale, la lithosphère océanique se refroidit et s’épaissit.
L’augmentation de sa densité au-delà d’un seuil d’équilibre explique son plongement dans l’asthénosphère. En surface, son âge n’excède pas 200 Ma.

Dans les zones de subduction, des volcans émettent des laves souvent visqueuses associées à des gaz et leurs éruptions sont fréquemment explosives. La déshydratation des matériaux de la croûte océanique subduite libère de l’eau qu’elle a emmagasinée au cours de son histoire, ce qui provoque la fusion partielle des péridotites du manteau sus-jacent.
Si une fraction des magmas arrive en surface (volcanisme), la plus grande partie cristallise en profondeur et donne des roches à structure grenue de type granitoïde. Un magma, d’origine mantellique, aboutit ainsi à la création de nouveau matériau continental.

Les chaînes de montagnes anciennes ont des reliefs moins élevés que les plus récentes. On y observe à l’affleurement une plus forte proportion de matériaux transformés et/ou formés en profondeur. Les parties superficielles des reliefs tendent à disparaître. Altération et érosion contribuent à l’effacement des reliefs. Les produits de démantèlement sont transportés sous forme solide ou soluble, le plus souvent par l’eau, jusqu’en des lieux plus ou moins éloignés où ils se déposent (sédimentation). Des phénomènes tectoniques participent aussi à la disparition des reliefs. L’ensemble de ces phénomènes débute dès la naissance du relief et constitue un vaste recyclage de la croûte continentale.

Géothermie et propriétés thermiques de la Terre

La température croît avec la profondeur (gradient géothermique) ; un flux thermique atteint la surface en provenance des profondeurs de la Terre (flux géothermique). Gradients et flux varient selon le contexte géodynamique. Le flux thermique a pour origine principale la désintégration des substances radioactives contenues dans les roches. Deux mécanismes de transfert thermique existent dans la Terre : la convection et la conduction. Le transfert par convection est beaucoup plus efficace.



Thème 2 : enjeux planétaires contemporains


Géothermie et propriétés thermiques de la Terre



À l’échelle globale, le flux fort dans les dorsales est associé à la production de lithosphère nouvelle ; au contraire, les zones de subduction présentent un flux faible associé au plongement de la lithosphère âgée devenue dense. La Terre est une machine thermique. L’énergie géothermique utilisable par l’Homme est variable d’un endroit à l’autre. Le prélèvement éventuel d’énergie par l’Homme ne représente qu’une infime partie de ce qui est dissipé


La plante domestiquée



La sélection exercée par l’Homme sur les plantes cultivées a souvent retenu (volontairement ou empiriquement) des caractéristiques génétiques différentes de celles qui sont favorables pour les plantes sauvages. Une même espèce cultivée comporte souvent plusieurs variétés sélectionnées selon des critères différents ; c’est une forme de biodiversité.
Les techniques de croisement permettent d’obtenir de nouvelles plantes qui n’existaient pas dans la nature (nouvelles variétés, hybrides, etc.). Les techniques du génie génétique permettent d’agir directement sur le génome des plantes cultivées.

Thème 3 : corps humain et santé


Le maintien de l’intégrité de l’organisme : quelques aspects de la réaction immunitaire



L’immunité innée ne nécessite pas d’apprentissage préalable, est génétiquement héritée et est présente dès la naissance. Elle repose sur des mécanismes de reconnaissance et d’action très conservés au cours de l’évolution. Très rapidement mise en oeuvre, l’immunité innée est la première à intervenir lors de situations variées (atteintes des tissus, infection, cancer). C’est une première ligne de défense qui agit d’abord seule puis se prolonge pendant toute la réaction immunitaire.
La réaction inflammatoire aiguë en est un mécanisme essentiel. Elle fait suite à l’infection ou à la lésion d’un tissu et met en jeu des molécules à l’origine de symptômes stéréotypés (rougeur, chaleur, gonflement, douleur). Elle prépare le déclenchement de l’immunité adaptative

Alors que l’immunité innée est largement répandue chez les êtres vivants, l’immunité adaptative est propre aux vertébrés. Elle s’ajoute à l’immunité innée et assure une action plus spécifique contre des molécules, ou partie de molécules. Les cellules de l’immunité adaptative ne deviennent effectrices qu’après une première rencontre avec un antigène grâce aux phénomènes de sélection, d’amplification et de différenciation clonales.

Les défenses adaptatives associées avec les défenses innées permettent normalement d’éliminer la cause du déclenchement de la réaction immunitaire. Le système immunitaire, normalement, ne se déclenche pas contre des molécules de l’organisme ou de ses symbiotes. Cela est vrai notamment pour la réponse adaptative. Pourtant, les cellules de l’immunité adaptative, d’une grande diversité, sont produites aléatoirement par des mécanismes génétiques complexes qui permettent potentiellement de répondre à une multitude de molécules.
La maturation du système immunitaire résulte d’un équilibre dynamique entre la production de cellules et la répression ou l’élimination des cellules autoréactives.

Une fois formés, certains effecteurs de l’immunité adaptative sont conservés grâce à des cellules-mémoires à longue durée de vie. Cette mémoire immunitaire permet une réponse secondaire à l’antigène plus rapide et quantitativement plus importante qui assure une protection de l’organisme vis-à-vis de cet antigène.
La vaccination déclenche une telle mémorisation. L’injection de produits immunogènes mais non pathogènes (particules virales, virus atténués, etc.) provoque la formation d’un pool de cellules mémoires dirigées contre l’agent d’une maladie. L’adjuvant du vaccin déclenche la réaction innée indispensable à l’installation de la réaction adaptative.
Le phénotype immunitaire d’un individu se forme au gré des expositions aux antigènes et permet son adaptation à l’environnement. La vaccination permet d’agir sur ce phénomène. La production aléatoire de lymphocytes naïfs est continue tout au long de la vie mais, au fil du temps, le pool des lymphocytes mémoires augmente.

Neurone et fibre musculaire : la communication nerveuse

Le réflexe myotatique est un réflexe monosynaptique. Il met en jeu différents éléments qui constituent l’arc-réflexe. Le neurone moteur conduit un message nerveux codé en fréquence de potentiels d’actions. La commande de la contraction met en jeu le fonctionnement de la synapse neuromusculaire.

L’exploration du cortex cérébral permet de découvrir les aires motrices spécialisées à l’origine des mouvements volontaires. Les messages nerveux moteurs qui partent du cerveau cheminent par des faisceaux de neurones qui descendent dans la moelle jusqu’aux motoneurones. C’est ce qui explique les effets paralysants des lésions médullaires.
Le corps cellulaire du motoneurone reçoit des informations diverses qu’il intègre sous la forme d’un message moteur unique et chaque fibre musculaire reçoit le message d’un seul motoneurone.

La comparaison des cartes motrices de plusieurs individus montre des différences importantes. Loin d’être innées, ces différences s’acquièrent au cours du développement, de l’apprentissage des gestes et de l’entraînement. Cette plasticité cérébrale explique aussi les capacités de récupération du cerveau après la perte de fonction accidentelle d’une petite partie du cortex moteur.
Les capacités de remaniements se réduisent tout au long de la vie, de même que le nombre de cellules nerveuses. C’est donc un capital à préserver et entretenir.

Cours de SVT en ligne :

De l’oeil au cerveau : quelques aspects de la vision


La tectonique des plaques : l’histoire d’un modèle


Expression, stabilité et variation du patrimoine génétique


Féminin, masculin


Enjeux planétaires contemporains

————————————–



Thème 1. La Terre dans l’Univers, la vie et l’évolution du vivant


Expression, stabilité et variation du patrimoine génétique



étapes divisions cellulaire SVT 1ère S

cycle cellulaire et information génétique SVT 1ère S



La tectonique des plaques : l’histoire d’un modèle




Thème 2 – Enjeux planétaires contemporains



Tectonique des plaques et géologie appliquée




Nourrir l’humanité




Thème 3 – Corps humain et santé



Féminin, masculin




appareil génital masculin SVT test



Variation génétique et santé





De l’oeil au cerveau : quelques aspects de la vision


Accéder au cours en ligne ici


——————————————-


Thème 1. La Terre dans l’Univers, la vie et l’évolution du vivant



Expression, stabilité et variation du patrimoine génétique



Reproduction conforme de la cellule et réplication de l’ADN

Les chromosomes sont des structures constantes des cellules eucaryotes qui sont dans des états de condensation variables au cours du cycle cellulaire.
En général la division cellulaire est une reproduction conforme qui conserve toutes les caractéristiques du caryotype (nombre et morphologie des chromosomes).

Chaque chromatide contient une molécule d’ADN. Au cours de la phase S, l’ADN subit la réplication semi-conservative. En absence d’erreur, ce phénomène préserve, par copie conforme, la séquence des nucléotides.
Ainsi, les deux cellules filles provenant par mitose d’une cellule mère possèdent la même information génétique.

Variabilité génétique et mutation de l’ADN

Pendant la réplication de l’ADN surviennent des erreurs spontanées et rares, dont la fréquence est augmentée par l’action d’agents mutagènes. L’ADN peut aussi être endommagé en dehors de la réplication.
Le plus souvent l’erreur est réparée par des systèmes enzymatiques. Quand elle ne l’est pas, si les modifications n’empêchent pas la survie de la cellule, il apparaît une mutation, qui sera transmise si la cellule se divise.

Une mutation survient soit dans une cellule somatique (elle est ensuite présente dans le clone issu de cette cellule) soit dans une cellule germinale (elle devient alors héréditaire). Les mutations sont la source aléatoire de la diversité des allèles, fondement de la biodiversité.

L’expression du patrimoine génétique

La séquence des nucléotides d’une molécule d’ADN représente une information. Le code génétique est le système de correspondance mis en jeu lors de la traduction de cette information. À quelques exceptions près, il est commun à tous les êtres vivants.
Les portions codantes de l’ADN comportent l’information nécessaire à la synthèse de chaînes protéiques issues de l’assemblage d’acides aminés.

Chez les eucaryotes, la transcription est la fabrication, dans le noyau, d’une molécule d’ARN pré-messager, complémentaire du brin codant de l’ADN. Après une éventuelle maturation, l’ARN messager est traduit en protéines dans le cytoplasme.
Un même ARN pré-messager peut subir, suivant le contexte, des maturations différentes et donc être à l’origine de plusieurs protéines différentes.

L’ensemble des protéines qui se trouvent dans une cellule (phénotype moléculaire) dépend :
– du patrimoine génétique de la cellule (une mutation allélique peut être à l’origine d’une protéine différente ou de l’absence d’une protéine) ;
– de la nature des gènes qui s’expriment sous l’effet de l’influence de facteurs internes et externes variés.
Le phénotype macroscopique dépend du phénotype cellulaire, lui-même induit par le phénotype moléculaire.


Thème 2 – Enjeux planétaires contemporains



Tectonique des plaques et géologie appliquée



La tectonique des plaques : l’histoire d’un modèle

Au début du XXème siècle, les premières idées évoquant la mobilité horizontale s’appuient sur quelques constatations :
– la distribution bimodale des altitudes (continents/océans) ;
– les tracés des côtes ;
– la distribution géographique des paléoclimats et de certains fossiles.
Ces idées se heurtent au constat d’un état solide de la quasi-totalité du globe terrestre établi, à la même époque, par les études sismiques. L’idée de mobilité horizontale est rejetée par l’ensemble de la communauté scientifique.

L’interprétation actuelle des différences d’altitude moyennes entre les continents et les océans

La différence d’altitude observée entre continents et océans reflète un contraste géologique. Les études sismiques et pétrographiques permettent de caractériser et de limiter deux grands types de croûtes terrestres : une croûte océanique essentiellement formée de basalte et de gabbro et une croûte continentale constituée entre autres de granite. La croûte repose sur le manteau, constitué de péridotite.

L’hypothèse d’une expansion océanique et sa confrontation à des constats nouveaux

Au début des années 1960, les découvertes de la topographie océanique et des variations du flux thermique permettent d’imaginer une expansion océanique par accrétion de matériau remontant à l’axe des dorsales, conséquence d’une convection profonde.
La mise en évidence de bandes d’anomalies magnétiques symétriques par rapport à l’axe des dorsales océaniques, corrélables avec les phénomènes d’inversion des pôles magnétiques (connus depuis le début du siècle), permet d’éprouver cette hypothèse et de calculer des vitesses d’expansion.

Le concept de lithosphère et d’asthénosphère

Au voisinage des fosses océaniques, la distribution spatiale des foyers des séismes en fonction de leur profondeur s’établit selon un plan incliné.
Les différences de vitesse des ondes sismiques qui se propagent le long de ce plan, par rapport à celles qui s’en écartent, permettent de distinguer : la lithosphère de l’asthénosphère.
L’interprétation de ces données sismiques permet ainsi de montrer que la lithosphère s’enfonce dans le manteau au niveau des fosses dites de subduction.
La limite inférieure de la lithosphère correspond généralement à l’isotherme 1300° C.

Un premier modèle global : une lithosphère découpée en plaques rigides

À la fin des années soixante, la géométrie des failles transformantes océaniques permet de proposer un modèle en plaques rigides. Des travaux complémentaires parachèvent l’établissement de la théorie de la tectonique des plaques en montrant que les mouvements divergents (dorsales), décrochants (failles transformantes) et convergents (zones de subduction) sont cohérents avec ce modèle géométrique.
Des alignements volcaniques, situés en domaine océanique ou continental, dont la position ne correspond pas à des frontières de plaques, sont la trace du déplacement de plaques lithosphériques au dessus d’un point chaud fixe, en première approximation, dans le manteau.

Le renforcement du modèle par son efficacité prédictive

Le modèle prévoit que la croûte océanique est d’autant plus vieille qu’on s’éloigne de la dorsale. Les âges des sédiments en contact avec le plancher océanique (programme de forage sous-marins JOIDES) confirment cette prédiction et les vitesses prévues par le modèle de la tectonique des plaques.
Le modèle prévoit des vitesses de déplacements des plaques (d’après le paléomagnétisme et les alignements de volcans intraplaques). Avec l’utilisation des techniques de positionnement par satellites (GPS), à la fin du XXème siècle, les mouvements des plaques deviennent directement observables et leurs vitesses sont confirmées.

L’évolution du modèle : le renouvellement de la lithosphère océanique

En permanence, de la lithosphère océanique est détruite dans les zones de subduction et produite dans les dorsales. La divergence des plaques de part et d’autre de la dorsale permet la mise en place d’une lithosphère nouvelle à partir de matériaux d’origine mantélique. Dans les zones de subduction, les matériaux de la vieille lithosphère océanique s’incorporent au manteau.


Thème 2 – Enjeux planétaires contemporains



Tectonique des plaques et géologie appliquée



Le modèle de la tectonique des plaques constitue un cadre intellectuel utile pour rechercher des gisements pétroliers.
La tectonique globale peut rendre compte :
– d’un positionnement géographique du bassin favorable au dépôt d’une matière organique abondante et à sa conservation ;
– d’une tectonique en cours de dépôt (subsidence) et après le dépôt qui permettent l’enfouissement et la transformation de la matière organique puis la mise en place du gisement.
La rare coïncidence de toutes ces conditions nécessaires explique la rareté des gisements dans l’espace et le temps.


Nourrir l’humanité



La production végétale : utilisation de la productivité primaire

Un écosystème naturel est constitué d’un biotope et d’une biocénose. Son fonctionnement d’ensemble est permis par la productivité primaire qui, dans les écosystèmes continentaux, repose sur la photosynthèse des plantes vertes.

L’agriculture repose sur la constitution d’agrosystèmes gérés dans le but de fournir des produits (dont les aliments) nécessaires à l’humanité.
Un agrosystème implique des flux de matière (dont l’eau) et d’énergie qui conditionnent sa productivité et son impact environnemental.

L’exportation de biomasse, la fertilité des sols, la recherche de rendements posent le problème de l’apport d’intrants dans les cultures (engrais, produits phytosanitaires, etc.).
Le coût énergétique et les conséquences environnementales posent le problème des pratiques utilisées. Le choix des techniques culturales vise à concilier la nécessaire production et la gestion durable de l’environnement.

La production animale : une rentabilité énergétique réduite

Dans un écosystème naturel, la circulation de matière et d’énergie peut être décrite par la notion de pyramide de productivité.
Dans un agrosystème, le rendement global de la production par rapport aux consommations (énergie, matière) dépend de la place du produit consommé dans la pyramide de productivité.
Ainsi, consommer de la viande ou un produit végétal n’a pas le même impact écologique.

Pratiques alimentaires collectives et perspectives globales

À l’échelle globale, l’agriculture cherche à relever le défi de l’alimentation d’une population humaine toujours croissante. Cependant, les limites de la planète cultivable sont bientôt atteintes : les ressources (eau, sol, énergie) sont limitées tandis qu’il est nécessaire de prendre en compte l’environnement pour en assurer la durabilité


Thème 3 – Corps humain et santé



Féminin, masculin



Devenir femme ou homme

Les phénotypes masculin et féminin se distinguent par des différences anatomiques, physiologiques, et chromosomiques.
La mise en place des structures et de la fonctionnalité des appareils sexuels se réalise, sous le contrôle du patrimoine génétique, sur une longue période qui va de la fécondation à la puberté, en passant par le développement embryonnaire et foetal.

Sexualité et procréation

La puberté est la dernière étape de la mise en place des caractères sexuels.
Chez l’homme et la femme, le fonctionnement de l’appareil reproducteur est contrôlé par un dispositif neuroendocrinien qui fait intervenir l’hypothalamus, l’hypophyse et les gonades.

La connaissance de ces mécanismes permet de comprendre et de mettre au point des méthodes de contraception féminine préventive (pilules contraceptives) ou d’urgence (pilule du lendemain). Des méthodes de contraception masculine hormonale se développent.
D’autres méthodes contraceptives existent, dont certaines présentent aussi l’intérêt de protéger contre les infections sexuellement transmissibles.

L’infertilité des couples peut avoir des causes variées. Dans beaucoup de cas, des techniques permettent d’aider les couples à satisfaire leur désir d’enfant : insémination artificielle, Fivete, ICSI.

Sexualité et bases biologiques du plaisir

L’activité sexuelle est associée au plaisir. Le plaisir repose notamment sur des phénomènes biologiques, en particulier l’activation dans le cerveau des « systèmes de récompense ».



Variation génétique et santé



Patrimoine génétique et maladie

La mucoviscidose est une maladie fréquente, provoquée par la mutation d’un gène qui est présent sous cette forme chez une personne sur 40 environ. Seuls les homozygotes pour l’allèle muté sont malades.
Le phénotype malade comporte des aspects macroscopiques qui s’expliquent par la modification d’une protéine. L’étude d’un arbre généalogique permet de prévoir le risque de transmission de la maladie.
On limite les effets de la maladie en agissant sur des paramètres du milieu. La thérapie génétique constitue un espoir de correction de la maladie dans les cellules pulmonaires atteintes.

Le plus souvent, l’impact du génome sur la santé n’est pas un déterminisme absolu. Il existe des gènes dont certains allèles rendent plus probable le développement d’une maladie sans pour autant le rendre certain. En général les modes de vie et le milieu interviennent également, et le développement d’une maladie dépend alors de l’interaction complexe entre facteurs du milieu et génome.
Un exemple de maladie (maladie cardiovasculaire, diabète de type II) permet d’illustrer le type d’études envisageables.

Perturbation du génome et cancérisation

Des modifications accidentelles du génome peuvent se produire dans des cellules somatiques et se transmettre à leurs descendantes. Elles sont à l’origine de la formation d’un clone cellulaire porteur de ce génome modifié. La formation d’un tel clone est parfois le commencement d’un processus de cancérisation.
Des modifications somatiques du génome surviennent par mutations spontanées ou favorisée par un agent mutagène. D’autres sont dues à des infections virales.
La connaissance de la nature des perturbations du génome responsable d’un cancer permet d’envisager des mesures de protection (évitement des agents mutagènes, surveillance, vaccination).

Variation génétique bactérienne et résistance aux antibiotiques

Des mutations spontanées provoquent une variation génétique dans les populations de bactéries. Parmi ces variations, certaines font apparaître des résistances aux antibiotiques.
L’application d’un antibiotique sur une population bactérienne sélectionne les formes résistantes et permet leur développement. L’utilisation systématique de traitements antibiotiques peut augmenter la fréquence des formes résistantes par sélection naturelle.



De l’oeil au cerveau : quelques aspects de la vision


Accéder au cours en ligne ici


Le cristallin : une lentille vivante

Le cristallin est l’un des systèmes transparents de l’oeil humain. Il est formé de cellules vivantes qui renouvellent en permanence leur contenu. Les modalités de ce renouvellement sont indispensables à sa transparence.
Des anomalies de forme du cristallin expliquent certains défauts de vision. Avec l’âge sa transparence et sa souplesse peuvent être altérées.

Les photorécepteurs : un produit de l’évolution

La rétine est une structure complexe qui comprend les récepteurs sensoriels de la vision appelés photorécepteurs. Celle de l’Homme contient les cônes permettant la vision des couleurs (3 types de cônes respectivement sensibles au bleu, au vert et au rouge) et les bâtonnets sensibles à l’intensité lumineuse.
Les gènes des pigments rétiniens constituent une famille multigénique (issue de duplications) dont l’étude permet de placer l’Homme parmi les Primates.
Des anomalies des pigments rétiniens se traduisent par des perturbations de la vision des couleurs.
Le message nerveux issu de l’oeil est acheminé au cerveau par le nerf optique.

Cerveau et vision : aires cérébrales et plasticité

Plusieurs aires corticales participent à la vision. L’imagerie fonctionnelle du cerveau permet d’observer leur activation lorsque l’on observe des formes, des mouvements. La reconnaissance des formes nécessite une collaboration entre les fonctions visuelles et la mémoire.

Des substances comme le LSD perturbent le fonctionnement des aires cérébrales associées à la vision et provoquent des hallucinations qui peuvent dériver vers des perturbations cérébrales graves et définitives.

La mise en place du phénotype fonctionnel du système cérébral impliqué dans la vision repose sur des structures cérébrales innées, issues de l’évolution et sur la plasticité cérébrale au cours de l’histoire personnelle.
De même la mémoire nécessaire par exemple à la reconnaissance d’un visage ou d’un mot repose sur la plasticité du cerveau.
L’apprentissage repose sur la plasticité cérébrale. Il nécessite la sollicitation répétée des mêmes circuits neuroniques.





–> Pour voir le programme de terminale scientifique


La Terre dans l’Univers, la vie et l’évolution du vivant : une planète habitée


Les conditions de la vie : une particularité de la Terre ?


La nature du vivant

La biodiversité, résultat et étape de l’évolution



Enjeux planétaires contemporains : énergie, sol



Le soleil : une source d’énergie essentielle


Le sol : un patrimoine durable ?



Corps humain et santé : l’exercice physique



Des modifications physiologiques à l’effort

Une boucle de régulation nerveuse

Pratiquer une activité physique en préservant sa santé

——————————–




Retour aux cours de SVT 2nde


La Terre dans l’Univers, la vie et l’évolution du vivant : une planète habitée


Les conditions de la vie : une particularité de la Terre ?

La Terre est une planète rocheuse du système solaire. Les conditions physico-chimiques qui y règnent permettent l’existence d’eau liquide et d’une atmosphère compatible avec la vie.
Ces particularités sont liées à la taille de la Terre et à sa position dans le système solaire. Ces conditions peuvent exister sur d’autres planètes qui possèderaient des caractéristiques voisines sans pour autant que la présence de vie y soit certaine.

La nature du vivant

Les êtres vivants sont constitués d’éléments chimiques disponibles sur le globe terrestre. Leurs proportions sont différentes dans le monde inerte et dans le monde vivant. Ces éléments chimiques se répartissent dans les diverses molécules constitutives des êtres vivants.
Les êtres vivants se caractérisent par leur matière carbonée et leur richesse en eau. L’unité chimique des êtres vivants est un indice de leur parenté.

De nombreuses transformations chimiques se déroulent à l’intérieur de la cellule : elles constituent le métabolisme. Il est contrôlé par les conditions du milieu et par le patrimoine génétique.
La cellule est un espace limité par une membrane qui échange de la matière et de l’énergie avec son environnement. Cette unité structurale et fonctionnelle commune à tous les êtres vivants est un indice de leur parenté.

La transgénèse montre que l’information génétique est contenue dans la molécule d’ADN et qu’elle y est inscrite dans un langage universel. La variation génétique repose sur la variabilité de la molécule d’ADN (mutation). L’universalité du rôle de l’ADN est un indice de la parenté des êtres vivants.

La biodiversité, résultat et étape de l’évolution

La biodiversité est à la fois la diversité des écosystèmes, la diversité des espèces et la diversité génétique au sein des espèces. L’état actuel de la biodiversité correspond à une étape de l’histoire du monde vivant : les espèces actuelles représentent une infime partie du total des espèces ayant existé depuis les débuts de la vie.
La biodiversité se modifie au cours du temps sous l’effet de nombreux facteurs, dont l’activité humaine.

Au sein de la biodiversité, des parentés existent qui fondent les groupes d’êtres vivants. Ainsi, les vertébrés ont une organisation commune. Les parentés d’organisation des espèces d’un groupe suggèrent qu’elles partagent toutes un ancêtre commun.
La diversité des allèles est l’un des aspects de la biodiversité.

La dérive génétique est une modification aléatoire de la diversité des allèles. Elle se produit de façon plus marquée lorsque l’effectif de la population est faible. La sélection naturelle et la dérive génétique peuvent conduire à l’apparition de nouvelles espèces.


Enjeux planétaires contemporains : énergie, sol



Le soleil : une source d’énergie essentielle

La lumière solaire permet, dans les parties chlorophylliennes des végétaux, la synthèse de matière organique à partir d’eau, de sels minéraux et de dioxyde de carbone. Ce processus permet, à l’échelle de la planète, l’entrée de matière minérale et d’énergie dans la biosphère.

La présence de restes organiques dans les combustibles fossiles montre qu’ils sont issus d’une biomasse. Dans des environnements de haute productivité, une faible proportion de la matière organique échappe à l’action des décomposeurs puis se transforme en combustible fossile au cours de son enfouissement.

La répartition des gisements de combustibles fossiles montre que transformation et conservation de la matière organique se déroulent dans des circonstances géologiques bien particulières.
La connaissance de ces mécanismes permet de découvrir les gisements et de les exploiter par des méthodes adaptées. Cette exploitation a des implications économiques et environnementales.

L’utilisation de combustible fossile restitue rapidement à l’atmosphère du dioxyde de carbone prélevé lentement et piégé depuis longtemps. Brûler un combustible fossile, c’est en réalité utiliser une énergie solaire du passé.
L’augmentation rapide, d’origine humaine de la concentration du dioxyde de carbone dans l’atmosphère interfère avec le cycle naturel du carbone.

L’énergie solaire est inégalement reçue à la surface de la planète. La photosynthèse en utilise moins de 1%. Le reste chauffe l’air (par l’intermédiaire du sol) et l’eau (ce qui est à l’origine des vents et courants) et évapore l’eau (ce qui permet le cycle de l’eau).
Utiliser l’énergie des vents, des courants marins, des barrages hydroélectriques, revient à utiliser indirectement de l’énergie solaire.

Ces ressources énergétiques sont rapidement renouvelables. La comparaison de l’énergie reçue par la planète et des besoins humains en énergie permet de discuter de la place actuelle ou future de ces différentes formes d’énergie d’origine solaire.


Le sol : un patrimoine durable ?

Pour satisfaire les besoins alimentaires de l’humanité, l’Homme utilise à son profit la photosynthèse. L’agriculture a besoin pour cela de sols cultivables et d’eau : deux ressources très inégalement réparties à la surface de la planète, fragiles et disponibles en quantités limitées. Elle entre en concurrence avec la biodiversité naturelle.

La biomasse végétale produite par l’agriculture est une source de nourriture mais aussi une source de combustibles ou d’agrocarburants. Ces deux productions entrent en concurrence.

Un sol résulte d’une longue interaction entre les roches et la biosphère, conditionnée par la présence d’eau et la température. Le sol est lent à se former, inégalement réparti à la surface de la planète, facilement dégradé et souvent détourné de sa fonction biologique. Sa gestion est un enjeu majeur pour l’humanité.


Corps humain et santé : l’exercice physique



Des modifications physiologiques à l’effort

Au cours d’un exercice long et/ou peu intense, l’énergie est fournie par la respiration, qui utilise le dioxygène et les nutriments.
L’effort physique augmente la consommation de dioxygène :
– plus l’effort est intense, plus la consommation de dioxygène augmente ;
– il y a une limite à la consommation de dioxygène.
La consommation de nutriments dépend aussi de l’effort fourni. L’exercice physique est un des facteurs qui aident à lutter contre l’obésité.

Au cours de l’effort un certain nombre de paramètres physiologiques sont modifiés : fréquence cardiaque, volume d’éjection systolique (et donc débit cardiaque) ; fréquence ventilatoire et volume courant (et donc débit ventilatoire) ; pression artérielle.
Ces modifications physiologiques permettent un meilleur approvisionnement des muscles en dioxygène et en nutriments. L’organisation anatomique facilite cet apport privilégié. Un bon état cardiovasculaire et ventilatoire est indispensable à la pratique d’un exercice physique.


Une boucle de régulation nerveuse

La pression artérielle est une grandeur contrôlée par plusieurs paramètres. Par exemple, il existe une boucle réflexe de contrôle de la fréquence cardiaque (dont la pression artérielle dépend par l’intermédiaire du débit) :
– des capteurs (barorécepteurs) sont sensibles à la valeur de la pression artérielle ;
– un centre bulbaire intègre les informations issues des barorécepteurs et module les messages nerveux en direction de l’effecteur (coeur) ;
– les informations sont transmises du centre à l’effecteur par des nerfs sympathiques et parasympathiques.

La boucle de régulation contribue à maintenir la pression artérielle dans d’étroites limites autour d’une certaine valeur. A l’effort, l’organisme s’écarte de cette situation standard.

Pratiquer une activité physique en préservant sa santé

Le muscle strié squelettique et les articulations constituent un système fragile qui doit être protégé. Les accidents musculo-articulaires s’expliquent par une détérioration du tissu musculaire, des tendons, ou de la structure articulaire.
Au cours de la contraction musculaire, la force exercée tire sur les tendons et fait jouer une articulation, ce qui conduit à un mouvement.

Des pratiques inadaptées ou dangereuses (exercice trop intense, dopage…) augmentent la fragilité du système musculo-articulaire et/ou provoquent des accidents.

Vive les SVT

Les Sciences de la Vie et de la Terre au collège et au lycée. Découverte, actualité, cours, aide et soutien en ligne.


© Vivelessvt.com 2008-2020
Mentions légales

VivelesSVT.com est un site d'information pédagogique sur les SVT, Sciences de la Vie et de la Terre, dédié aux élèves de collège et de lycée. Découvrez chaque jour l'actualité des sciences, des fiches pour mieux comprendre, du soutien et de l'aide pour réussir ses cours, ses contrôles, ses devoirs et ses exposés.