header image

Retrouvez à cette page le programme officiel des SVT en terminale S

Retrouvez à cette page les meilleurs sites pour réviser son BAC de SVT en TERMINALE S

———————————–

Thème 1 – La Terre dans l’Univers, la vie, l’évolution du vivant

Thème 2 – Enjeux planétaires contemporains

Thème 3 – Corps humain et santé

enseignement de spécialité SVT

Retrouvez à cette page le programme officiel de la Spé SVT – Terminale S


Pour connaître en détails le programme de terminale cliquez ici

———————–

Thème 1 – La Terre dans l’Univers, la vie, l’évolution du vivant

Le brassage génétique et sa contribution à la diversité génétique

La méiose est la succession de deux divisions cellulaires précédée comme toute division d’un doublement de la quantité d’ADN (réplication). Dans son schéma général, elle produit quatre cellules haploïdes à partir d’une cellule diploïde.
Au cours de la méiose, des échanges de fragments de chromatides (crossing-over ou enjambement) se produisent entre chromosomes homologues d’une même paire.
Les chromosomes ainsi remaniés subissent un brassage interchromosomique résultant de la migration aléatoire des chromosomes homologues lors de la 1ère division de méiose. Une diversité potentiellement infinie de gamètes est ainsi produite.

Le brassage génétique et sa contribution à la diversité génétique

Des anomalies peuvent survenir. Un crossing-over inégal aboutit parfois à une duplication de gène. Un mouvement anormal de chromosomes produit une cellule présentant un nombre inhabituel de chromosomes.
Ces mécanismes, souvent sources de troubles, sont aussi parfois sources de diversification du vivant (par exemple à l’origine des familles multigéniques).

Le brassage génétique et sa contribution à la diversité génétique

Au cours de la fécondation, un gamète mâle et un gamète femelle s’unissent : leur fusion conduit à un zygote. La diversité génétique potentielle des zygotes est immense. Chaque zygote contient une combinaison unique et nouvelle d’allèles. Seule une fraction de ces zygotes est viable et se développe.

Diversification génétique et diversification des êtres vivants

D’autres mécanismes de diversification des génomes existent : hybridations suivies de polyploïdisation, transfert par voie virale, etc. S’agissant des gènes impliqués dans le développement, des formes vivantes très différentes peuvent résulter de variations dans la chronologie et l’intensité d’expression de gènes communs, plus que d’une différence génétique.
Une diversification des êtres vivants est aussi possible sans modification des génomes : associations (dont symbioses) par exemple. Chez les vertébrés, le développement de comportements nouveaux, transmis d’une génération à l’autre par voie non génétique, est aussi source de diversité : chants d’oiseaux, utilisation d’outils, etc.

De la diversification des êtres vivants à l’évolution de la biodiversité

Sous l’effet de la pression du milieu, de la concurrence entre êtres vivants et du hasard, la diversité des populations change au cours des générations. L’évolution est la transformation des populations qui résulte de ces différences de survie et du nombre de descendants.

De la diversification des êtres vivants à l’évolution de la biodiversité

La diversité du vivant est en partie décrite comme une diversité d’espèces. La définition de l’espèce est délicate et peut reposer sur des critères variés qui permettent d’apprécier le caractère plus ou moins distinct de deux populations (critères phénotypiques, interfécondité, etc.).
Le concept d’espèce s’est modifié au cours de l’histoire de la biologie. Une espèce peut être considérée comme une population d’individus suffisamment isolés génétiquement des autres populations.
Une population d’individus identifiée comme constituant une espèce n’est définie que durant un laps de temps fini. On dit qu’une espèce disparaît si l’ensemble des individus concernés disparaît ou cesse d’être isolé génétiquement. Une espèce supplémentaire est définie si un nouvel ensemble s’individualise.

Un regard sur l’évolution de l’Homme

D’un point de vue génétique, l’Homme et le chimpanzé, très proches, se distinguent surtout par la position et la chronologie d’expression de certains gènes. Le phénotype humain, comme celui des grands singes proches, s’acquiert au cours du développement pré et postnatal, sous l’effet de l’interaction entre l’expression de l’information génétique et l’environnement (dont la relation aux autres individus).

Un regard sur l’évolution de l’Homme

Les premiers primates fossiles datent de – 65 à -50 millions d’années. Ils sont variés et ne sont identiques ni à l’Homme actuel, ni aux autres singes actuels. La diversité des grands primates connue par les fossiles, qui a été grande, est aujourd’hui réduite. Homme et chimpanzé partagent un ancêtre commun récent. Aucun fossile ne peut être à coup sûr considéré comme un ancêtre de l’homme ou du chimpanzé.

Un regard sur l’évolution de l’Homme

Le genre Homo regroupe l’Homme actuel et quelques fossiles qui se caractérisent notamment par une face réduite, un dimorphisme sexuel peu marqué sur le squelette, un style de bipédie avec trou occipital avancé et aptitude à la course à pied, une mandibule parabolique, etc. Production d’outils complexes et variété des pratiques culturelles sont associées au genre Homo, mais de façon non exclusive. La construction précise de l’arbre phylogénétique du genre Homo est controversée dans le détail.

Les relations entre organisation et mode de vie, résultat de l’évolution : l’exemple de la vie fixée chez les plantes

Les caractéristiques de la plante sont en rapport avec la vie fixée à l’interface sol/air dans un milieu variable au cours du temps. Elle développe des surfaces d’échanges de grande dimension avec l’atmosphère (échanges de gaz, capture de la lumière) et avec le sol (échange d’eau et d’ions).
Des systèmes conducteurs permettent les circulations de matières dans la plante, notamment entre systèmes aérien et souterrain. Elle possède des structures et des mécanismes de défense (contre les agressions du milieu, les prédateurs, les variations saisonnières).

Les relations entre organisation et mode de vie, résultat de l’évolution : l’exemple de la vie fixée chez les plantes

L’organisation florale, contrôlée par des gènes de développement, et le fonctionnement de la fleur permettent le rapprochement des gamètes entre plantes fixées. La pollinisation de nombreuses plantes repose sur une collaboration animal pollinisateur/plante produit d’une coévolution. À l’issue de la fécondation, la fleur se transforme en fruits contenant des graines.
La dispersion des graines est nécessaire à la survie et à la dispersion de la descendance. Elle repose souvent sur une collaboration animal disséminateur/plante produit d’une coévolution.

La caractérisation du domaine continental

La lithosphère est en équilibre (isostasie) sur l’asthénosphère. Les différences d’altitude moyenne entre les continents et les océans s’expliquent par des différences crustales.
La croûte continentale, principalement formée de roches voisines du granite, est d’une épaisseur plus grande et d’une densité plus faible que la croûte océanique. L’âge de la croûte océanique n’excède pas 200 Ma, alors que la croûte continentale date par endroit de plus de 4 Ga. Cet âge est déterminé par radiochronologie. Au relief positif qu’est la chaîne de montagnes, répond, en profondeur, une importante racine crustale.

La caractérisation du domaine continental

L’épaisseur de la croûte résulte d’un épaississement lié à un raccourcissement et un empilement. On en trouve des indices tectoniques (plis, failles, nappes) et des indices pétrographiques (métamorphisme, traces de fusion partielle). Les résultats conjugués des études tectoniques et minéralogiques permettent de reconstituer un scénario de l’histoire de la chaîne.

La convergence lithosphérique : contexte de la formation des chaînes de montagnes

Les chaînes de montagnes présentent souvent les traces d’un domaine océanique disparu (ophiolites) et d’anciennes marges continentales passives. La « suture » de matériaux océaniques résulte de l’affrontement de deux lithosphères continentales (collision). Tandis que l’essentiel de la lithosphère continentale continue de subduire, la partie supérieure de la croûte s’épaissit par empilement de nappes dans la zone de contact entre les deux plaques.

La convergence lithosphérique : contexte de la formation des chaînes de montagnes

Les matériaux océaniques et continentaux montrent les traces d’une transformation minéralogique à grande profondeur au cours de la subduction. La différence de densité entre l’asthénosphère et la lithosphère océanique âgée est la principale cause de la subduction. En s’éloignant de la dorsale, la lithosphère océanique se refroidit et s’épaissit.
L’augmentation de sa densité au-delà d’un seuil d’équilibre explique son plongement dans l’asthénosphère. En surface, son âge n’excède pas 200 Ma.

Le magmatisme en zone de subduction : une production de nouveaux matériaux continentaux

Dans les zones de subduction, des volcans émettent des laves souvent visqueuses associées à des gaz et leurs éruptions sont fréquemment explosives. La déshydratation des matériaux de la croûte océanique subduite libère de l’eau qu’elle a emmagasinée au cours de son histoire, ce qui provoque la fusion partielle des péridotites du manteau sus-jacent.
Si une fraction des magmas arrive en surface (volcanisme), la plus grande partie cristallise en profondeur et donne des roches à structure grenue de type granitoïde. Un magma, d’origine mantellique, aboutit ainsi à la création de nouveau matériau continental.

La disparition des reliefs

Les chaînes de montagnes anciennes ont des reliefs moins élevés que les plus récentes. On y observe à l’affleurement une plus forte proportion de matériaux transformés et/ou formés en profondeur. Les parties superficielles des reliefs tendent à disparaître. Altération et érosion contribuent à l’effacement des reliefs. Les produits de démantèlement sont transportés sous forme solide ou soluble, le plus souvent par l’eau, jusqu’en des lieux plus ou moins éloignés où ils se déposent (sédimentation). Des phénomènes tectoniques participent aussi à la disparition des reliefs. L’ensemble de ces phénomènes débute dès la naissance du relief et constitue un vaste recyclage de la croûte continentale.

Thème 2 – Enjeux planétaires contemporains

Géothermie et propriétés thermiques de la Terre

La température croît avec la profondeur (gradient géothermique) ; un flux thermique atteint la surface en provenance des profondeurs de la Terre (flux géothermique). Gradients et flux varient selon le contexte géodynamique. Le flux thermique a pour origine principale la désintégration des substances radioactives contenues dans les roches. Deux mécanismes de transfert thermique existent dans la Terre : la convection et la conduction. Le transfert par convection est beaucoup plus efficace.

Géothermie et propriétés thermiques de la Terre

À l’échelle globale, le flux fort dans les dorsales est associé à la production de lithosphère nouvelle ; au contraire, les zones de subduction présentent un flux faible associé au plongement de la lithosphère âgée devenue dense. La Terre est une machine thermique. L’énergie géothermique utilisable par l’Homme est variable d’un endroit à l’autre. Le prélèvement éventuel d’énergie par l’Homme ne représente qu’une infime partie de ce qui est dissipé

La plante domestiquée

La sélection exercée par l’Homme sur les plantes cultivées a souvent retenu (volontairement ou empiriquement) des caractéristiques génétiques différentes de celles qui sont favorables pour les plantes sauvages. Une même espèce cultivée comporte souvent plusieurs variétés sélectionnées selon des critères différents ; c’est une forme de biodiversité.
Les techniques de croisement permettent d’obtenir de nouvelles plantes qui n’existaient pas dans la nature (nouvelles variétés, hybrides, etc.). Les techniques du génie génétique permettent d’agir directement sur le génome des plantes cultivées.

Thème 3 – Corps humain et santé

Le maintien de l’intégrité de l’organisme : la réaction immunitaire

L’immunité innée ne nécessite pas d’apprentissage préalable, est génétiquement héritée et est présente dès la naissance. Elle repose sur des mécanismes de reconnaissance et d’action très conservés au cours de l’évolution. Très rapidement mise en oeuvre, l’immunité innée est la première à intervenir lors de situations variées (atteintes des tissus, infection, cancer). C’est une première ligne de défense qui agit d’abord seule puis se prolonge pendant toute la réaction immunitaire.
La réaction inflammatoire aiguë en est un mécanisme essentiel. Elle fait suite à l’infection ou à la lésion d’un tissu et met en jeu des molécules à l’origine de symptômes stéréotypés (rougeur, chaleur, gonflement, douleur). Elle prépare le déclenchement de l’immunité adaptative

L’immunité adaptative, prolongement de l’immunité innée

Alors que l’immunité innée est largement répandue chez les êtres vivants, l’immunité adaptative est propre aux vertébrés. Elle s’ajoute à l’immunité innée et assure une action plus spécifique contre des molécules, ou partie de molécules. Les cellules de l’immunité adaptative ne deviennent effectrices qu’après une première rencontre avec un antigène grâce aux phénomènes de sélection, d’amplification et de différenciation clonales.

L’immunité adaptative, prolongement de l’immunité innée

Les défenses adaptatives associées avec les défenses innées permettent normalement d’éliminer la cause du déclenchement de la réaction immunitaire. Le système immunitaire, normalement, ne se déclenche pas contre des molécules de l’organisme ou de ses symbiotes. Cela est vrai notamment pour la réponse adaptative. Pourtant, les cellules de l’immunité adaptative, d’une grande diversité, sont produites aléatoirement par des mécanismes génétiques complexes qui permettent potentiellement de répondre à une multitude de molécules.
La maturation du système immunitaire résulte d’un équilibre dynamique entre la production de cellules et la répression ou l’élimination des cellules autoréactives.

Le phénotype immunitaire au cours de la vie

Une fois formés, certains effecteurs de l’immunité adaptative sont conservés grâce à des cellules-mémoires à longue durée de vie. Cette mémoire immunitaire permet une réponse secondaire à l’antigène plus rapide et quantitativement plus importante qui assure une protection de l’organisme vis-à-vis de cet antigène.
La vaccination déclenche une telle mémorisation. L’injection de produits immunogènes mais non pathogènes (particules virales, virus atténués, etc.) provoque la formation d’un pool de cellules mémoires dirigées contre l’agent d’une maladie. L’adjuvant du vaccin déclenche la réaction innée indispensable à l’installation de la réaction adaptative.
Le phénotype immunitaire d’un individu se forme au gré des expositions aux antigènes et permet son adaptation à l’environnement. La vaccination permet d’agir sur ce phénomène. La production aléatoire de lymphocytes naïfs est continue tout au long de la vie mais, au fil du temps, le pool des lymphocytes mémoires augmente.

Neurone et fibre musculaire : la communication nerveuse

Le réflexe myotatique est un réflexe monosynaptique. Il met en jeu différents éléments qui constituent l’arc-réflexe. Le neurone moteur conduit un message nerveux codé en fréquence de potentiels d’actions. La commande de la contraction met en jeu le fonctionnement de la synapse neuromusculaire.

De la volonté au mouvement

L’exploration du cortex cérébral permet de découvrir les aires motrices spécialisées à l’origine des mouvements volontaires. Les messages nerveux moteurs qui partent du cerveau cheminent par des faisceaux de neurones qui descendent dans la moelle jusqu’aux motoneurones. C’est ce qui explique les effets paralysants des lésions médullaires.
Le corps cellulaire du motoneurone reçoit des informations diverses qu’il intègre sous la forme d’un message moteur unique et chaque fibre musculaire reçoit le message d’un seul motoneurone.

Motricité et plasticité cérébrale

La comparaison des cartes motrices de plusieurs individus montre des différences importantes. Loin d’être innées, ces différences s’acquièrent au cours du développement, de l’apprentissage des gestes et de l’entraînement. Cette plasticité cérébrale explique aussi les capacités de récupération du cerveau après la perte de fonction accidentelle d’une petite partie du cortex moteur.
Les capacités de remaniements se réduisent tout au long de la vie, de même que le nombre de cellules nerveuses. C’est donc un capital à préserver et entretenir.

Premier génome d’un animal parasite de plantes séquencé
Le premier génome d’un animal parasite de plantes vient d’être séquencé par un consortium international de 27 laboratoires, impliquant l’INRA, le CNRS et le Génoscope et coordonné par une équipe de chercheurs du Centre INRA de Sophia-Antipolis. Il s’agit du génome d’un ver parasite de plantes, le nématode à galles, Meloidogyne incognita. Cette avancée permet de lever le voile sur l’arsenal et les adaptations développés par les ravageurs des cultures pour attaquer les plantes. Cette étude a aussi conduit à l’identification de nouvelles cibles pour le développement de stratégies de lutte spécifique contre ces organismes. Le détail de ces travaux est publié dans l’édition avancée en ligne de la revue Nature Biotechnology du 27 juillet 2008.


Larves de Meloidogyne incognita

Les nématodes sont des vers qui représentent une large fraction de la diversité biologique sur terre, et qui colonisent tous les milieux: 25 000 espèces sont décrites, et on estime que le nombre total d’espèces pourrait atteindre plus d’un million. En dehors de l’espèce Caenorhabditis elegans, qui est un modèle pour les recherches sur le développement et le vieillissement des organismes, très peu de choses sont actuellement connues sur la diversité au sein du groupe des nématodes.

Les nématodes parasites de plantes, rencontrés majoritairement dans le sol, sont responsables de dégâts estimés à plusieurs dizaines de milliards d’euros par an à travers le monde. La lutte chimique représentait jusqu’à une date très récente le moyen de lutte le plus largement répandu. En raison de leur toxicité pour la santé humaine et l’environnement, la plupart des molécules utilisées ont été interdites récemment et la mise au point de solutions alternatives est un enjeu majeur à très court terme.

La publication de la séquence du génome du nématode à galles (1), Meloidogyne incognita, représente une avancée majeure à plus d’un titre. Il s’agit en effet, à la fois, du premier séquençage de génome d’un animal parasite de plantes et d’un métazoaire parthénogénétique (c’est-à-dire se reproduisant sans sexualité). Pour Pierre Abad, directeur de l’unité mixte de recherche Interactions biotiques en santé végétale (INRA-CNRS-Université de Nice Sophia-Antipolis) et coordonnateur de ce projet, « cette étude va permettre d’avoir un premier éclairage sur l’arsenal parasitaire présent chez ces ravageurs de plantes et sur les mécanismes génétiques à l’origine de la formidable capacité d’adaptation de ces organismes asexués. »

Le Génoscope (Paris, France) a produit au total plus de 1 million de fragments séquencés à partir desquels la prédiction de gènes a été réalisée avec le support de l’INRA de Toulouse. Les ressources et les compétences de l’ensemble des partenaires du consortium international (dont l’INRA, le CNRS, et le Génoscope, pour la France) ont ensuite été mobilisées pour analyser l’ensemble de ces données.

Un génome complexe à l’origine d’une extrême plasticité

Au cours de l’analyse du génome, les chercheurs ont eu la surprise de constater que le génome de ce nématode était en fait constitué de la juxtaposition d’au moins deux génomes. Le taux de divergence moyen entre ces différents génomes est un des plus importants jamais observé jusqu’à présent dans le règne vivant. Cette particularité génétique pourrait être à l’origine de l’acquisition rapide de nouvelles fonctions conférant à ces organismes asexués leur grande capacité d’adaptation responsable de leur large distribution à travers la planète.

Un arsenal enzymatique adapté au parasitisme des plantes

Un autre résultat majeur de cette analyse est l’identification d’un large éventail enzymatique permettant la dégradation de la paroi cellulaire des plantes. Cette diversité et cette richesse sont d’une extrême originalité dans la mesure où elles restent inégalées à ce jour dans le règne animal. La nature des gènes impliqués est également surprenante puisqu’ils présentent de très fortes similitudes avec des gènes bactériens, suggérant l’existence de multiples évènements de transferts horizontaux d’origine bactérienne. L’acquisition de nouvelles fonctions via les transferts de gènes pourrait représenter un élément clé de l’adaptation des organismes animaux au parasitisme des plantes.

L’analyse comparée du génome de ce nématode avec ceux d’autres nématodes, comme C. elegans et le nématode parasite de l’homme Brugia Malayi ou encore la drosophile, a également permis d’avoir une première image de ce qui fait l’identité des parasites animaux, mettant en évidence par là-même de nouvelles cibles potentielles, plus spécifiques, pour lutter contre ces organismes.

Cette première séquence génomique complète d’un organisme animal parasite de plantes apporte donc des bases pour la compréhension des relations hôte-pathogène et elle complète notre vision des adaptations par lesquelles les ravageurs de plantes envahissent leurs hôtes.

Dans un avenir proche, le séquençage programmé d’autres génomes de nématodes ayant des modes de vie différents permettra de mieux comprendre le succès évolutif de ces organismes à l’échelle de la planète.

Note:

(1) Meloidogyne incognita est un parasite extrêmement polyphage, capable d’attaquer plus de 3000 plantes hôtes. Il est particulièrement dommageable sur les cultures maraîchères (tomate, piment, melon, etc.), sur le café, le coton, etc.

En savoir plus : http://www.techno-science.net

Source: CNRS
Illustration: © INRA

Un premier lac d’hydrocarbures vient d’être formellement identifié à la surface de Titan, le principal satellite de Saturne. Ce résultat vient confirmer les précédentes observations de la sonde Cassini.

En 2006, les chercheurs de la NASA publient dans Nature l’analyse de données récoltées par la sonde Cassini lors de ses survols successifs de Titan depuis 2004. De petites étendues extrêmement lisses, horizontales, à des endroits où semblent converger ce qui s’apparentent à des lits des rivières sont observées. Tout un faisceau d’indices qui laisse déjà fortement suggérer à l’époque la présence de lacs d’hydrocarbures à la surface de l’astre. Restait à en apporter une preuve formelle. C’est chose faite après l’étude spectroscopique effectuée au niveau d’Ontario Lacus, une des tâches sombres relevée en 2007 par Cassini au niveau du pôle Sud.




La signature relevée par les chercheurs est en effet caractéristique de l’éthane.Etant donné les conditions de températures et de pression qui règnent à la surface, il ne peut qu’être présent sous sa forme liquide. Il serait probablement en solution avec de l’azote, du méthane et d’autres hydrocarbures légers mais la composition précise reste difficile à déterminer en raison des nombreuses interférences atmosphériques qui troublent le spectre infrarouge obtenu par les chercheurs. Peu importe au final car le résultat tant attendu est là : la Terre n’est pas le seul corps céleste à abriter un élément sous sa forme liquide !

Si les scientifiques avaient un temps imaginé la présence d’un océan, les images prises par la sonde Cassini au début de l’année avaient clairement conduit à rejeter cette hypothèse. Il n’en reste pas moins que les traces d’hydrocarbures légers gazeux dans l’atmosphère (5%), l’observation de ce qui pourrait être des rivières, et de ce que l’on sait maintenant être des lacs, tout converge aujourd’hui pour appuyer l’existence d’un cycle naturel du méthane sur Titan, similaire au cycle de l’eau terrestre. Un véritable rêve éveillé pour les amateurs de science-fiction.

Tristan vey
Sciences et Avenir.com




Contacter Julien Cabioch :

Enseignant en SVT, fondateur de vivelesSVT.com et rédacteur au Café Pédagogique

Julien.Cabioch1[arobase]ac-rennes[point]fr


Contacter l’équipe :

vivelessvt [arobase] yahoo [point] fr


Vive les SVT

Les Sciences de la Vie et de la Terre au collège et au lycée. Découverte, actualité, cours, aide et soutien en ligne.


© Vivelessvt.com 2008-2020
Mentions légales

VivelesSVT.com est un site d'information pédagogique sur les SVT, Sciences de la Vie et de la Terre, dédié aux élèves de collège et de lycée. Découvrez chaque jour l'actualité des sciences, des fiches pour mieux comprendre, du soutien et de l'aide pour réussir ses cours, ses contrôles, ses devoirs et ses exposés.